
Eur. Phys. J. D 38, 537–544 (2006)
DOI: 10.1140/epjd/e2006-00056-8 THE EUROPEAN

PHYSICAL JOURNAL D

Phase switching and quantum interference in a 3-level
Λ-shape bistable model

K.I. Osman1,a and S.S. Hassan2,b

1 Department of Mathematics, Al-Azhar University, Faculty of Science (Women’s Section), P.O. Box 11754,
Nasr City, Cairo, Egypt

2 University of Bahrain, College of Science, Math. Dept., P.O. Box 32038, Bahrain

Received 29 July 2005 / Received in final form 7 January 2006
Published online 14 March 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. The steady state bistable behaviour of a three-level Λ-shape is examined in the presence of a
control field (Ω + χ (t) eiϕ): Ω is the strong Rabi component, χ (t) is the stochastic part with relative
phase ϕ; with quantum interference between decay channels taken into account. One- and two-way phase
switching effect for the transmitted field against the phase are predicted at fixed values for the incident
input field. Also cooperative switching effect shows multistable/bistable behaviour. Quantum interference
tends to diminish the dispersive effects responsible for multistable behaviour (in the input-output relation
and the cooperative switching diagram) and asymmetry (in the phase switching diagram). Equivalence of
the role of the stochastic part of the control field with that of the “classically” squeezed field is shown to
occur only in the absence of quantum interference.

PACS. 42.65.Pc Optical bistability, multistability, and switching, including local field effects – 42.65.-k
Nonlinear optics

1 Introduction

Quantum coherence and interference effects associated
with a three-level atomic systems have played a crucial
role in controlling many phenomena (such as: electro-
magnetic induced transparency (EIT), lasing without in-
version (LWI), optical multistability (OM)) in non-linear
quantum optics [1,2]. Interestingly, OM has been observed
in an EIT three-level Λ-shape atomic system in 78Rb va-
por cell inside an optical ring cavity [3]. The advantage
of using atomic vapor cell (rather than atomic beam) al-
lows to observe OM to a high value of the atomic density
(or cooperation parameter). Phase control of amplitude-
fluctuation-induced optical bistability has been theoret-
ically investigated for the three-level Λ-shape atomic
system placed in a ring cavity [4], where the control field
amplitude (associated with the transition between the up-
per level |2〉 and the lower level |1〉, Fig. 1) comprises
two terms (Ω + χ(t)eiϕ): Ω is strong Rabi frequency, χ(t)
is weak stochastic field amplitude and ϕ is the relative
phase between the two field components-which have the
same frequency ω1. A main conclusion in [4] is that the
bandwidth of the stochastic field dephases the atomic co-
herence between level |1〉, |3〉 and hence the bistable be-
haviour may occur (also see [5]). Here, we extend the work
of [4] by including the quantum interference (QI) effects
and different detuning as well as exploring the multiple
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Fig. 1. The 3-level Λ-type scheme: the control field (Ω +
χ(t)eiϕ) of frequency ω1 couples the transition from level
|1〉 ↔ |2〉 while the cavity field E of frequency ωc couples the
transition |3〉 ↔ |2〉. The decay rates γ1, γ2 from level |2〉 to
level |1〉, |3〉 respectively.

phase switching effect, by varying the relative phase ϕ for
fixed values of the incident coherent field.

2 The model master equation
and state equation

The three-level atomic Λ-shape scheme is depicted in Fig-
ure 1. The three levels |1〉, |2〉, |3〉 have energies E1,
E2, E3 respectively. Atomic operators are represented as
Akj = |k〉〈j|, Akk = |k〉〈k|. The control field (Ω + χ(t)eiϕ)
couples levels |2〉, |1〉 while the other transition |2〉 ↔ |3〉
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is driven by the intracavity field of Rabi frequency E and
oscillatory frequency ωc.

The usual master equation approach (e.g. [6]) gives
the equation for the reduced atomic density operator ρs

within the rotating wave approximation (� = 1 is taken
throughout this paper) in the form,

ρ̇s = −i [H1 + H2, ρs] − i [H3, ρs] + Lρs (1)

where,

H1 = (∆2 − ∆1) A11 + ∆2A22 − 1
2
Ω (A12 + A21) , (2)

H2 = −1
2
χ (t)

(
e−iϕA12 + eiϕA21

)
, (3)

H3 = −1
2

(EA23 + E∗A32) (4)

and

Lρs = γ1 (2A12ρsA21 − A22ρs − ρsA22)
+γ2 (2A32ρsA23 − A22ρs − ρsA22)
+2γ13 (A32ρsA21 + A12ρsA23) . (5)

The notations are: the detuning parameters ∆1 = E2 −
E1 − ω1, ∆2 = E2 −E3 −ωc, γj is the spontaneous-decay
constant of the exited level |2〉 to the sublevel |j〉(j = 1, 3)
and γ13 represents the effect of the quantum interference
resulting from the cross coupling between the transitions
|2〉 ↔ |1〉 and |2〉 ↔ |3〉, which is given by γ13 =

√
γ1γ2p

with the alignment parameter, p = d21 · d23/(|d21||d23|)
(dij = atomic dipole moment between levels |i〉, |j〉). If
p = 1, then γ13 =

√
γ1γ2 and the interference effect is

maximum when d21 is parallel to d23 while, if d21 is or-
thogonal to d23, then p = 0, γ13 = 0, and the quantum
interference disappears. It should be noted that quantum
interference processes (called by other authors “sponta-
neous generation of coherence”, as well “vacuum induced
coherence”) in a 3-level Λ-type system may lead to sym-
metric coherent superposition of the two-lower states [7].
The existence of such coherence effect depends on the non-
orthogonality of the concerned two dipole moments. This
can be achieved, for example, by: (i) mixing of levels aris-
ing from internal fields, as observed in molecular sodium
dimer where the excited sub-levels are superpositions of
singlet and triplet states that are mixed by spin-orbit
interaction [8], (ii) mixing of levels arising from exter-
nal fields, by pre-selecting the polarization of the cavity
field [9].

Now, the weak stochastic field component χ(t) is as-
sumed to be a real Gaussian-Markovian random process,
〈χ(t)〉 = 0, and has the correlation function,

〈χ(t)χ(t′)〉 = Dke−k|t−t′| (6)

with D, k are the strength and bandwidth parameters re-
spectively. For Ω � √

Dk, k � γ1, γ2 the stochastic vari-
able χ (t) can be adiabatically eliminated [10] from equa-
tion (1) giving rise to a time-averaged master equation for

the reduced density operator (see Appendix A for outline),

ρ̇ = −i [H1 + H3, ρ] + Lρ

− γc

{[(
A21 + e−2iϕA12

)
, [B, ρ]

]

+
[(

A12 + e2iϕA21

)
,
[
B+, ρ

]]}
(7)

where γc = Dk/4 and

B =
∫

0

∞
e−kτ

(
eiH1τA12e

−iH1τ
)
dτ

= b1A11 + b2A22 + b3A12 + b4A21 = B+ (8)

with,

b1 = −b2 =
Ω (∆ − ik)

2k (k2 + Ω′2)
(9)

b3 =
Ω2

2kΩ′2 +

[
k∆2 + Ω′2 (k + 2i∆)

]

2Ω′2 (k2 + Ω′2)
(10)

b4 =
Ω2

2k (k2 + Ω′2)
(11)

and Ω′ =
√

∆2 + Ω2 is a generalized Rabi frequency and
have assumed for simplicity that ∆2 = ∆1/2 = ∆.

The equations for the density matrix elements accord-
ing to equation (7) are:

ρ̇11 = −2 Re (µ1) ρ11 + 2 [γ1 + Re (µ1)] ρ22

−
(

1
2
iΩ − 2µ2

)
ρ12 +

(
1
2
iΩ + 2µ∗

2

)
ρ21 (12)

ρ̇33 = 2γ2ρ22 +
1
2
iE∗ρ23 − 1

2
iEρ32 (13)

ρ̇12 = −1
2
iΩ (ρ11 − ρ22) − (γ1 + γ2 − i∆ + 2µ∗

1) ρ12

+2µ1e
−2iϕρ21 − 1

2
iE∗ρ13 (14)

ρ̇13 = 2γ13ρ22 +
(

1
2
i∆ − µ∗

1

)
ρ13

+
(

1
2
iΩ + µ∗

2

)
ρ23 − 1

2
iEρ12 (15)

ρ̇23 = −
(

γ1 + γ2 +
1
2
i∆ + µ1

)
ρ23 +

(
1
2
iΩ − µ2

)
ρ13

+
1
2
iE (ρ33 − ρ22) (16)

with the trace condition
∑

i

ρii = 1 and µ1 = γc(b3 +

b∗4e
2iϕ), µ2 = γc(b1 + b∗1e

2iϕ).
Note that in the above equations, the QI manifests

itself only in the spontaneous decay of level |2〉 that con-
tributes to the coherence ρ13 (the term 2γ13ρ22) in equa-
tion (15).

In the absence of QI (i.e.; γ13 = 0), the above equa-
tions are different from those in reference [4], resulting to
different assumption of the detuning as mentioned before.

Now, consider a single mode ring cavity of length L
(Fig. 2) containing an atomic medium of N homogeneously
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Fig. 2. The ring cavity configuration with plane mirrors Mi

(i = 1–4).

broadened three-level atoms of Λ-shape as in Figure 1;
with an input field EI at the mirror M1 propagates in
the z-directions, and the transmitted field is ET at the
mirror M2. The two mirrors M1, M2 have reflectivity R
and transmitivity T , while mirrors M3 and M4 have 100%
reflectivity. The boundary conditions for the perfect tuned
cavity field amplitude E (z, t) at z = 0, L in the steady-
state limit are in the form [11]

E (0) =
√

TEI + RE(L) (17)

ET =
√

TE(L). (18)

In the mean-field limit, using the boundary conditions
equations (17), (18) and the slowly varying Maxwell’s
equation

∂E

∂t
+ c

∂E

∂z
= 2πid2

32ωcNρ23 (19)

the input-output (steady-state) relationship is

y = x − 2iCρ23 (20)

where y = EI/γ2

√
T and x = ET /γ2

√
T are the input and

output field amplitudes, scaled in unit γ2 respectively, and
C = πNωcd

2
32L/cT is the cooperative parameter.

In the following section we examine numerically the
steady state input-output relation, equation (20) with
equations (12–16), as well the ‘phase’ and ‘cooperative’
switching effects in the absence (p = 0) and presence
(p �= 0) of the QI terms.

3 Numerical results

We measure all quantities in equations (12–16) in terms of
γ2, we take the data: Ω/γ2 = 30, k/γ2 = 20, D/γ2 = 0.2,
γ1/γ2 = 1 and C = 4 × 104.

3.1 Phase switching with no quantum interference
(p = 0)

At exact resonance (∆ = 0) the 3-D plot (|y|, |x|, ϕ) to-
gether with the 2-D plot of |x| versus |y| for different val-
ues of the phase ϕ are presented in Figures 3a and 3b.

For ϕ = π/2 there is no bistable behaviour, while for
ϕ = 0, π/4 bistable behaviour occurs with lower threshold
value at ϕ = 0. Switching diagram showing the variation
of the output field |x| against the phase ϕ at fixed incident
field values |y| = 156.5 and 178 are given in Figures 3c
and 3d. Figure 3c shows one-way switching (switch-off):
at ϕ = 0 if the system is on the upper branch (full line in
Fig. 3b) and as ϕ increases the point (k1) moves on the
steady state curve until it reaches the unstable point (k)
in Figure 3c and jumps down to the lower stable branch
and keeps varying with increasing ϕ — but — with no
further jumps. In Figure 3d at ϕ = π/4 if the system is at
the point k′

2 (Fig. 3b), and by increasing or decreasing ϕ,
the system switches-on to the stable upper branch with
no further jumps as ϕ changes.

In the off-resonance case (∆/γ2 = 0.1) the bistable
behaviour now occurs for ϕ = π/2 and longer hystere-
sis cycle shows for ϕ = 0. Possible multistable behaviour
may also occur for ϕ = π/4 (and 3π/8)- an indication
of higher nonlinearity due to interplay between dispersive
effects and phase-dependent terms (i∆/2 + µ1) in equa-
tions (14–16) for the coherences ρij (i �= j).

The switching diagram is shown for fixed |y| = 95 and
96 in Figures 4a and 4b respectively. At ϕ = 3π/8, if the
system is at the point (s2) on the upper branch — see
inset |x| − |y| curve in Figure 4b — and as ϕ changes two
possible switching-down processes can occur to the lower
stable branch. The slight change in the fixed value of |y|
to 96 (Fig. 4c) merges the isolated isle in Figure 4b with
the lower branch, and a two-way switching behaviour is
exhibited (a → a′, b → b′). Note that in this dispersive
case (∆ �= 0) the switching diagram is asymmetrical with
respect to ϕ at (π/2) unlike the resonant case in Figures 3c
and 3d.

3.2 Phase switching with quantum interference
(p �= 0)

Another significant effect on the optical bistability is the
quantum interference with the variation of the relative
phase. We display this effect in Figure 5 for the case of
perfect interference (p = 1). The threshold value for the
bistable curve for any value of ϕ, increases considerably
as shown in the 3-D plot of Figure 5a at exact resonance
(∆ = 0), and the hysteresis cycle narrows with increasing
the relative phase from 0 to π/2 then gradually enlarged
when ϕ increases from π/2 to π. These results might be
useful to control the threshold value and the hysteresis
cycle width of the bistability curve when the parameter p
takes optimal values. The switching diagram in this case
is shown in Figures 5b and 5c for fixed values of |y| = 178
and 213.2. This is similar to the switching-down diagram
of Figure 4b but symmetrically with respect to ϕ = π/2.
Hence quantum interference for suitable values of the fixed
input field |y| diminishes the dispersive effect [12] and
phase switching effect becomes symmetric as in the ab-
sorptive case of Figure 3. Therefore, effects of quantum
interference in the spontaneous emission and the relative
control phase are very useful in optimizing and controlling
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Fig. 3. (a) The 3-D plot for the incident field |y| versus the transmitted field |x| and the relative phase ϕ of the control field,
for C = 4× 104, Ω/γ2 = 30, k/γ2 = 20, D/γ2 = 0.2, γ1/γ2 = 1, ∆ = 0, p = 0. (b) The variation of |x| with |y| for same data as
(a) and different values of the relative phase ϕ: ϕ = 0 (solid line), ϕ = π/4 (dotted line) and ϕ = π/2 (dash-dot line). (c), (d)
The phase switching diagram ( |x| against ϕ) at fixed |y| = 156.5, 178 respectively.

Fig. 4. (a) As Figure 3b but for ∆/γ2 = 0.1. (b), (c) As Figures 3c and 3d but for ∆/γ2 = 0.1 at |y| = 95, 96 respectively.
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Fig. 5. (a) As Figure 3a but for p = 1. (b), (c) As Figures 3c and 3d but for p = 1 and |y| = 178, 213.2 respectively.

the optical switching process with dominant effect of the
stochastic field.

3.3 Cooperative switching

In Figures 6a and 6b, we present the switching behaviour
of the output field |x| as the cooperative parameter C
vary with fixed value of input field |y| = 300 at reso-
nance (∆ = 0) and off-resonance (∆ = 0.1) for different
values of the relative phase ϕ in the absence of quan-
tum interference (p = 0). For certain values of the phase
ϕ = 3π/8, π/4, the “nearly” transistor action in the ab-
sorptive regime (Fig. 6a) is changed to multistable be-
haviour due to dispersive effect (Fig. 6b) (similar be-
haviour occurs in the mesoscopic multi-stable regime [13]).
The effect of quantum interference (p = 1) makes the
switching-on value occurs at very small values of C (i.e.
low atomic density) as well independent of the phase value
ϕ in both absorptive and dispersive cases as shown in Fig-
ures 6c and 6d.

4 Summary

We have investigated the bistable model of three-level
Λ-shape atomic structure placed in a ring cavity with con-

trol field (Ω + χ(t)eiϕ) couples the transition between the
upper level and one of the two lower levels. Our investiga-
tion extends those of [4] by including the quantum inter-
ference (QI) effect due to the two decay channels, different
detuning and also by exploring the phase as well as cooper-
ative switching behaviour of the transmitted field against
the relative phase ϕ of the control field and against the
cooperation parameter. Our main results are:

(1) in the absence of QI multistable behaviour in the
input-output relation occurs due to dispersive effects
combined with certain values of the relative con-
trol phase parameter ϕ. Also, one-or two-way “phase
switching” effect occurs in the relation between the
output field and the relative control phase for cer-
tain values of the system parameters. These phase
switching effects are similar to that found for 2-level
bistable model in contact with squeezed vacuum reser-
voir [14,15]. The effect of QI is: (i) to increase the
threshold value of |y| in the bistable curve for any
value of ϕ, (ii) to diminish the dispersive effect re-
sponsible for multi-stable behaviour, and (iii) to delete
asymmetry in the phase switching diagram caused by
the dispersive effect;

(2) in the “cooperative switching” diagram (relation be-
tween the output field and the cooperative parameter
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Fig. 6. (a) The cooperative switching diagram (|x| against the cooperative parameter C) for |y| = 300, p = 0, ∆ = 0 and
various values of ϕ. (b) As (a) but for ∆/γ2 = 0.1. (c), (d) As (a) and (b) respectively but for p = 1.

C) and in the absence of QI, “transistor action” found
in the absorptive case which turned to multistable be-
haviour in the dispersive case. These, transistor ac-
tion, bi- or multi-stable behaviour in the (C − |x|)
diagram resembles those found for mesoscopic mul-
tistable systems (amplifier regime [16], initially pre-
pared atomic coherent state regime [13], 2-photon
2-level atom regime [17]) and also for dissipative
2-level bistable model with squeezed vacuum field in-
put [18]. The effect of QI is: (i) to lower the threshold
value of C, which becomes independent of the relative
control phase ϕ, and (ii) to eliminate both the tran-
sistor action and multistable behaviour as mentioned
above;

(3) as shown in the appendix when the stochastic part
of the control field is replaced by “classical” squeezed
vacuum field [19] interacting with the same levels |1〉,
|2〉 the resulting density matrix equations are the same
as equations (12–16) only in the absence of the QI.

Appendix

(1) First, we outline the standard perturbation techniques
(cf. [10]) to eliminate the weak stochastic variable χ(t),

from the density matrix equations (1–5), with correlations
function given by (6) and for Ω � √

Dk, k > γ1,2. First we
temporarily disregard the last two terms of equation (1);
since these quantity undergoes no change in the elimina-
tion procedure; then make the canonical transformation,

ρ̃s = eiH1tρse
−iH1t (A.1)

which obeys the master equation

˙̃ρs = −i
[
H̃2(t), ρ̃s

]
(A.2)

where,

H̃2(t) = −1
2
χ(t)F (t) (A.3)

with
F (t) = e−iϕA12(t) + eiϕA21(t) (A.4)

and
A12(t) = A†

21(t) = eiH1tA12e
−iH1t. (A.5)

Solving equation (A.2) with the help of the time depen-
dent perturbation theory up to the second order in k yields

˙̃ρs = −
t∫

0

[
H̃2(t),

[
H̃2(t′), ρ̃s

]]
dt′. (A.6)
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Calculating the trace over the stochastic field (ρ̃ =
Trstoch ρ̃s) in equation (A.6) with the help of equation (6),
making the change t− t′ = τ and invoking the Markov ap-
proximation ρ̃(t−τ) � ρ̃(t), the resulting master equation
for the reduced density operator ρ̃ takes the form

˙̃ρ (t) = −1
4
Dk

∞∫

0

e−kτ

× (
e−2iϕ [A12 (t) , [A12 (t − τ) , ρ̃ (t)]] + h.c.

)
dτ

− 1
4
Dk

∞∫

0

e−kτ ([A21 (t) , [A12 (t − τ) , ρ̃ (t)]] + h.c.) dτ.

(A.7)

Transforming equation (A.7) to the original picture via

ρ = eiH1tρ̃e−iH1t (A.8)

and utilizing the Heisenberg-equations for H1 and H3 and
restoring the Lρs contribution, we obtain equation (7).

(2) Now, it worth noting that if the stochastic field χ(t)
between levels |1〉, |2〉 is replaced by a broadband squeezed
vacuum, the equations for the density matrix elements, in
this case are [20]

ρ̇11 = −2n1γ1ρ11 + 2γ1(n1 + 1)ρ22 − 1
2
iΩ(ρ12 − ρ21)

− n1γ13(ρ13 + ρ31) (A.9)

ρ̇33 = 2γ2ρ22 +
1
2
iE∗ρ23 − 1

2
iEρ32 − n1γ13(ρ13 + ρ31)

(A.10)

ρ̇12 = −1
2
iΩ(ρ11 − ρ22) − [(2n1 + 1)γ1 + γ2 − i∆]ρ12

+ 2γ1m
∗
1ρ21 − 1

2
iE∗ρ13 − 2m∗

1γ13ρ23 − n1γ13ρ32

(A.11)

ρ̇13 = 2(n1 + 1)γ13ρ22 +
(

1
2
i∆ − n1γ1

)
ρ13 +

1
2
iΩρ23

− 1
2
iEρ12 − n1γ13ρ11 − n1γ13ρ33 (A.12)

ρ̇23 = −
[
(n1 + 1)γ1 + γ2 +

1
2
i∆

]
ρ23 +

1
2
iΩρ13

+
1
2
iE(ρ33 − ρ22) − n1γ13ρ21 − 2m1γ13ρ12 (A.13)

where n1 and |m1|eiΦ are the squeezing parameters such
that |m1|2 ≤ n1(n1 + 1) and Φ is the relative phase of
the squeezed vacuum with respect to that of the coherent
field.

In above equations (A.9–A.13) we notice that, the QI
contributes spontaneously to the coherence ρ13 (just as in
the case of stochastic part of the control field Eq. (15)),
and in addition, is associated with the following stimulated

processes:

(i) stimulated process associated with the occupations
ρ11, ρ22, ρ33 that contribute to the coherence ρ13 in
equation (A.12);

(ii) the dispersive coherence (2 Re(ρ13)) that affects the
occupation of the lower levels, ρ11, ρ33 in equa-
tions (A.9) and (A.10);

(iii) the coherence ρ23 that affects the coherence ρ12 (and
vice-versa) depending on the degree of the squeezing
parameter m equations (A.11) and (A.13). Further,
stimulated process associated with the coherence ρ32

contributes to the coherence ρ12 (and vice-versa).

The extra terms in equations (A.9–A.13) due to QI asserts
the quantum nature of both QI and stimulated processes
due to squeezed vacuum field.

The comparison of equations (A.9–A.13) with equa-
tions (12–16), in the absence of the quantum interference
(p = 0), at exact resonance (∆ = 0) for Φ = 2ϕ = 2nπ(n =
0, 1, 2, ...), gives

n1 = m1 =
D

4γ1
(A.14)

where D is the strength parameter of the weak stochastic
field.

This shows that the analogy between the case of weak
stochastic field and that of squeezed vacuum with “classi-
cal analogue” (n1 = m1) (cf. [21]) is destroyed in presence
of quantum interference.
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